
Mysql	convert	datetime	to	date	format

http://gluvoob.com/c3?utm_term=mysql+convert+datetime+to+date+format

Mysql	date	milliseconds.	Convert	php	date	to	mysql	datetime	format.	Javascript	convert	date	to	mysql	datetime	format.

You’d	like	to	get	the	date	from	a	date	and	time	column	in	a	MySQL	database.	Example:	Our	database	has	a	table	named	travel	with	data	in	the	columns	id,	first_name,	last_name,	and	timestamp_of_booking.	idfirst_namelast_nametimestamp_of_booking	1LisaWatson2019-04-20	14:15:34	2TomSmith2019-03-31	20:10:14	3AndyMarkus2019-08-03
10:05:45	4AliceBrown2019-07-01	12:47:54	For	each	traveler,	let’s	get	their	first	and	last	name	and	the	booking	date	only.	(Note:	The	timestamp_of_booking	column	contains	both	date	and	time	data.)	Solution:	We’ll	use	the	DATE()	function.	Here’s	the	query	you	would	write:	SELECT	first_name,	last_name,	DATE(timestamp_of_booking)	AS
date_of_booking	FROM	travel;	Here’s	the	result	of	the	query:	first_namelast_namedate_of_booking	LisaWatson2019-04-20	TomSmith2019-03-31	AndyMarkus2019-08-03	AliceBrown2019-07-01	Discussion:	In	MySQL,	use	the	DATE()	function	to	retrieve	the	date	from	a	datetime	or	timestamp	value.	This	function	takes	only	one	argument	–	either	an
expression	which	returns	a	date/datetime/	timestamp	value	or	the	name	of	a	timestamp/datetime	column.	(In	our	example,	we	use	a	column	of	the	timestamp	data	type.)	The	DATE()	function	returns	only	the	date	information.	In	our	example,	it	returns	‘2019-03-31’	for	Tom	Smith’s	booking	date.	Note	that	the	time	information	is	not	included.	Summary:
in	this	tutorial,	we	will	introduce	you	to	the	MySQL	DATE	data	type	and	show	you	some	useful	date	functions	to	handle	the	date	data	effectively.Introduction	to	MySQL	DATE	data	typeMySQL	DATE	is	one	of		the	five	temporal	data	types	used	for	managing	date	values.	MySQL	uses	yyyy-mm-dd	format	for	storing	a	date	value.	This	format	is	fixed	and	it
is	not	possible	to	change	it.For	example,	you	may	prefer	to	use	mm-dd-yyyy	format	but	you	can’t.	Instead,	you	follow	the	standard	date	format	and	use	the	DATE_FORMAT	function	to	format	the	date	the	way	you	want.MySQL	uses	3	bytes	to	store	a	DATE	value.	The	DATE	values	range	from	1000-01-01	to	9999-12-31.	If	you	want	to	store	a	date	value
that	is	out	of	this	range,	you	need	to	use	a	non-temporal	data	type	like	integer	e.g.,	three	columns,	and	each	column	for	the	year,	month,	and	day.	You	also	need	to	create	stored	functions	to	simulate	the	built-in	date	functions	provided	by	MySQL,	which	is	not	recommended.When	strict	mode	is	disabled,	MySQL	converts	any	invalid	date	e.g.,	2015-02-
30	to	the	zero	date	value	0000-00-00.MySQL	Date	values	with	two-digit	yearsMySQL	stores	the	year	of	the	date	value	using	four	digits.	In	case	you	use	two-digit	year	values,	MySQL	still	accepts	them	with	the	following	rules:Year	values	in	the	range	00-69	are	converted	to	2000-2069.Year	values	in	the	range	70-99	are	converted	to	1970	–
1999.However,	a	date	value	with	two	digits	is	ambiguous	therefore	you	should	avoid	using	it.Let’s	take	a	look	at	the	following	example.First,	create	a	table	named	people	with	birth	date	column	with	DATE	data	type.CREATE	TABLE	people	(id	INT	AUTO_INCREMENT	PRIMARY	KEY,	first_name	VARCHAR(50)	NOT	NULL,	last_name	VARCHAR(50)
NOT	NULL,	birth_date	DATE	NOT	NULL);Code	language:	SQL	(Structured	Query	Language)	(sql)Next,	insert	a	row	into	the	people	table.INSERT	INTO	people(first_name,last_name,birth_date)	VALUES('John','Doe','1990-09-01');Code	language:	SQL	(Structured	Query	Language)	(sql)Then,	query	the	data	from	the	people	table.SELECT	first_name,
last_name,	birth_date	FROM	people;Code	language:	SQL	(Structured	Query	Language)	(sql)After	that,	use	the	two-digit	year	format	to	insert	data	into	the	people	table.INSERT	INTO	people(first_name,last_name,birth_date)	VALUES('Jack','Daniel','01-09-01'),	('Lily','Bush','80-09-01');Code	language:	SQL	(Structured	Query	Language)	(sql)In	the	first
row,	we	used	01	(range	00-69)	as	the	year,	so	MySQL	converted	it	to	2001.	In	the	second	row,	we	used	80	(range	70-99)	as	the	year,	MySQL	converted	it	to	1980.Finally,	we	can	query	data	from	the	people	table	to	check	whether	data	was	converted	based	on	the	conversion	rules.SELECT	first_name,	last_name,	birth_date	FROM	people;Code	language:
SQL	(Structured	Query	Language)	(sql)MySQL	DATE	functionsMySQL	provides	many	useful	date	functions	that	allow	you	to	manipulate	date	effectively.To	get	the	current	date	and	time,	you	use	NOW()	function.Code	language:	SQL	(Structured	Query	Language)	(sql)+	|	NOW()	|	+	|	2017-05-13	07:59:38	|	+	1	row	in	set	(0.02	sec)Code	language:	SQL
(Structured	Query	Language)	(sql)To	get	only	date	part	of	a	DATETIME	value,	you	use	the	DATE()	function.Code	language:	SQL	(Structured	Query	Language)	(sql)+	|	DATE(NOW())	|	+	|	2015-07-13	|	+	1	row	in	set	(0.01	sec)Code	language:	SQL	(Structured	Query	Language)	(sql)To	get	the	current	system	date,	you	use		CURDATE()	function	as
follows:Code	language:	SQL	(Structured	Query	Language)	(sql)+	|	CURDATE()	|	+	|	2015-07-13	|	+	1	row	in	set	(0.02	sec)Code	language:	SQL	(Structured	Query	Language)	(sql)To	format	a	date	value,	you	use		DATE_FORMAT	function.	The	following	statement	formats	the	date	asmm/dd/yyyy	using	the	date	format	pattern	%m/%d/%Y	:SELECT
DATE_FORMAT(CURDATE(),	'%m/%d/%Y')	today;Code	language:	SQL	(Structured	Query	Language)	(sql)+	|	today	|	+	|	07/13/2015	|	+	1	row	in	set	(0.02	sec)Code	language:	SQL	(Structured	Query	Language)	(sql)To	calculate	the	number	of	days	between	two	date	values,	you	use	the	DATEDIFF	function	as	follows:SELECT	DATEDIFF('2015-11-
04','2014-11-04')	days;Code	language:	SQL	(Structured	Query	Language)	(sql)+	|	days	|	+	|	365	|	+	1	row	in	set	(0.02	sec)Code	language:	SQL	(Structured	Query	Language)	(sql)To	add	a	number	of	days,	weeks,	months,	years,	etc.,	to	a	date	value,	you	use	the	DATE_ADD	function:SELECT	'2015-01-01'	start,	DATE_ADD('2015-01-01',	INTERVAL	1	DAY)
'one	day	later',	DATE_ADD('2015-01-01',	INTERVAL	1	WEEK)	'one	week	later',	DATE_ADD('2015-01-01',	INTERVAL	1	MONTH)	'one	month	later',	DATE_ADD('2015-01-01',	INTERVAL	1	YEAR)	'one	year	later';Code	language:	SQL	(Structured	Query	Language)	(sql)Similarly,	you	can	subtract	an	interval	from	a	date	using	the	DATE_SUB
function:SELECT	'2015-01-01'	start,	DATE_SUB('2015-01-01',	INTERVAL	1	DAY)	'one	day	before',	DATE_SUB('2015-01-01',	INTERVAL	1	WEEK)	'one	week	before',	DATE_SUB('2015-01-01',	INTERVAL	1	MONTH)	'one	month	before',	DATE_SUB('2015-01-01',	INTERVAL	1	YEAR)	'one	year	before';Code	language:	SQL	(Structured	Query	Language)
(sql)If	you	want	to	get	the	day,	month,	quarter,	and	year	of	a	date	value,	you	can	use	the	corresponding	function	DAY,	MONTH,	QUARTER,	and	YEAR	as	follows:SELECT	DAY('2000-12-31')	day,	MONTH('2000-12-31')	month,	QUARTER('2000-12-31')	quarter,	YEAR('2000-12-31')	year;Code	language:	SQL	(Structured	Query	Language)	(sql)+	|	day	|
month	|	quarter	|	year	|	+	|	31	|	12	|	4	|	2000	|	+	1	row	in	set	(0.00	sec)Code	language:	SQL	(Structured	Query	Language)	(sql)To	get	the	week	information	week	related	functions.	For	example,	WEEK	function	returns	the	week	number,	WEEKDAY	function	returns	the	weekday	index,	and	WEEKOFYEAR	function	returns	the	calendar	week.SELECT
WEEKDAY('2000-12-31')	weekday,	WEEK('2000-12-31')	week,	WEEKOFYEAR('2000-12-31')	weekofyear;Code	language:	SQL	(Structured	Query	Language)	(sql)+	|	weekday	|	week	|	weekofyear	|	+	|	6	|	53	|	52	|	+	1	row	in	set	(0.04	sec)Code	language:	SQL	(Structured	Query	Language)	(sql)The	week	function	returns	the	week	number	with	the	zero-
based	index	if	you	don’t	pass	the	second	argument	or	if	you	pass	0.	If	you	pass	1,	it	will	return	week	number	with	1-indexed.SELECT	WEEKDAY('2000-12-31')	weekday,	WEEK('2000-12-31',1)	week,	WEEKOFYEAR('2000-12-31')	weekofyear;Code	language:	SQL	(Structured	Query	Language)	(sql)+	|	weekday	|	week	|	weekofyear	|	+	|	6	|	52	|	52	|	+	1
row	in	set	(0.00	sec)Code	language:	SQL	(Structured	Query	Language)	(sql)In	this	tutorial,	you	have	learned	about	the	MySQL	DATE	data	type	and	how	to	use	some	useful	date	functions	to	manipulate	date	values.Was	this	tutorial	helpful?	11.2.8	Conversion	Between	Date	and	Time	Types	To	some	extent,	you	can	convert	a	value	from	one	temporal
type	to	another.	However,	there	may	be	some	alteration	of	the	value	or	loss	of	information.	In	all	cases,	conversion	between	temporal	types	is	subject	to	the	range	of	valid	values	for	the	resulting	type.	For	example,	although	DATE,	DATETIME,	and	TIMESTAMP	values	all	can	be	specified	using	the	same	set	of	formats,	the	types	do	not	all	have	the	same
range	of	values.	TIMESTAMP	values	cannot	be	earlier	than	1970	UTC	or	later	than	'2038-01-19	03:14:07'	UTC.	This	means	that	a	date	such	as	'1968-01-01',	while	valid	as	a	DATE	or	DATETIME	value,	is	not	valid	as	a	TIMESTAMP	value	and	is	converted	to	0.	Conversion	of	DATE	values:	Conversion	to	a	DATETIME	or	TIMESTAMP	value	adds	a	time
part	of	'00:00:00'	because	the	DATE	value	contains	no	time	information.	Conversion	to	a	TIME	value	is	not	useful;	the	result	is	'00:00:00'.	Conversion	of	DATETIME	and	TIMESTAMP	values:	Conversion	to	a	DATE	value	takes	fractional	seconds	into	account	and	rounds	the	time	part.	For	example,	'1999-12-31	23:59:59.499'	becomes	'1999-12-31',
whereas	'1999-12-31	23:59:59.500'	becomes	'2000-01-01'.	Conversion	to	a	TIME	value	discards	the	date	part	because	the	TIME	type	contains	no	date	information.	For	conversion	of	TIME	values	to	other	temporal	types,	the	value	of	CURRENT_DATE()	is	used	for	the	date	part.	The	TIME	is	interpreted	as	elapsed	time	(not	time	of	day)	and	added	to	the
date.	This	means	that	the	date	part	of	the	result	differs	from	the	current	date	if	the	time	value	is	outside	the	range	from	'00:00:00'	to	'23:59:59'.	Suppose	that	the	current	date	is	'2012-01-01'.	TIME	values	of	'12:00:00',	'24:00:00',	and	'-12:00:00',	when	converted	to	DATETIME	or	TIMESTAMP	values,	result	in	'2012-01-01	12:00:00',	'2012-01-02
00:00:00',	and	'2011-12-31	12:00:00',	respectively.	Conversion	of	TIME	to	DATE	is	similar	but	discards	the	time	part	from	the	result:	'2012-01-01',	'2012-01-02',	and	'2011-12-31',	respectively.	Explicit	conversion	can	be	used	to	override	implicit	conversion.	For	example,	in	comparison	of	DATE	and	DATETIME	values,	the	DATE	value	is	coerced	to	the
DATETIME	type	by	adding	a	time	part	of	'00:00:00'.	To	perform	the	comparison	by	ignoring	the	time	part	of	the	DATETIME	value	instead,	use	the	CAST()	function	in	the	following	way:	date_col	=	CAST(datetime_col	AS	DATE)	Conversion	of	TIME	and	DATETIME	values	to	numeric	form	(for	example,	by	adding	+0)	depends	on	whether	the	value
contains	a	fractional	seconds	part.	TIME(N)	or	DATETIME(N)	is	converted	to	integer	when	N	is	0	(or	omitted)	and	to	a	DECIMAL	value	with	N	decimal	digits	when	N	is	greater	than	0:	mysql>	SELECT	CURTIME(),	CURTIME()+0,	CURTIME(3)+0;	+-----------+-------------+--------------+	|	CURTIME()	|	CURTIME()+0	|	CURTIME(3)+0	|	+-----------+-------------+----
----------+	|	09:28:00	|	92800	|	92800.887	|	+-----------+-------------+--------------+	mysql>	SELECT	NOW(),	NOW()+0,	NOW(3)+0;	+---------------------+----------------+--------------------+	|	NOW()	|	NOW()+0	|	NOW(3)+0	|	+---------------------+----------------+--------------------+	|	2012-08-15	09:28:00	|	20120815092800	|	20120815092800.889	|	+---------------------+----------------+-------------
-------+	Page	2	11.2.9	2-Digit	Years	in	Dates	Date	values	with	2-digit	years	are	ambiguous	because	the	century	is	unknown.	Such	values	must	be	interpreted	into	4-digit	form	because	MySQL	stores	years	internally	using	4	digits.	For	DATETIME,	DATE,	and	TIMESTAMP	types,	MySQL	interprets	dates	specified	with	ambiguous	year	values	using	these
rules:	Year	values	in	the	range	00-69	become	2000-2069.	Year	values	in	the	range	70-99	become	1970-1999.	For	YEAR,	the	rules	are	the	same,	with	this	exception:	A	numeric	00	inserted	into	YEAR(4)	results	in	0000	rather	than	2000.	To	specify	zero	for	YEAR(4)	and	have	it	be	interpreted	as	2000,	specify	it	as	a	string	'0'	or	'00'.	Remember	that	these
rules	are	only	heuristics	that	provide	reasonable	guesses	as	to	what	your	data	values	mean.	If	the	rules	used	by	MySQL	do	not	produce	the	values	you	require,	you	must	provide	unambiguous	input	containing	4-digit	year	values.	ORDER	BY	properly	sorts	YEAR	values	that	have	2-digit	years.	Some	functions	like	MIN()	and	MAX()	convert	a	YEAR	to	a
number.	This	means	that	a	value	with	a	2-digit	year	does	not	work	properly	with	these	functions.	The	fix	in	this	case	is	to	convert	the	YEAR	to	4-digit	year	format.	Page	3	The	string	data	types	are	CHAR,	VARCHAR,	BINARY,	VARBINARY,	BLOB,	TEXT,	ENUM,	and	SET.	For	information	about	storage	requirements	of	the	string	data	types,	see
Section	11.6,	“Data	Type	Storage	Requirements”.	For	descriptions	of	functions	that	operate	on	string	values,	see	Section	12.8,	“String	Functions	and	Operators”.	Page	4	11.3.1	String	Data	Type	Syntax	The	string	data	types	are	CHAR,	VARCHAR,	BINARY,	VARBINARY,	BLOB,	TEXT,	ENUM,	and	SET.	In	some	cases,	MySQL	may	change	a	string	column
to	a	type	different	from	that	given	in	a	CREATE	TABLE	or	ALTER	TABLE	statement.	See	Section	13.1.17.6,	“Silent	Column	Specification	Changes”.	For	definitions	of	character	string	columns	(CHAR,	VARCHAR,	and	the	TEXT	types),	MySQL	interprets	length	specifications	in	character	units.	For	definitions	of	binary	string	columns	(BINARY,
VARBINARY,	and	the	BLOB	types),	MySQL	interprets	length	specifications	in	byte	units.	Column	definitions	for	character	string	data	types	CHAR,	VARCHAR,	the	TEXT	types,	ENUM,	SET,	and	any	synonyms)	can	specify	the	column	character	set	and	collation:	CHARACTER	SET	specifies	the	character	set.	If	desired,	a	collation	for	the	character	set	can
be	specified	with	the	COLLATE	attribute,	along	with	any	other	attributes.	For	example:	CREATE	TABLE	t	(c1	VARCHAR(20)	CHARACTER	SET	utf8,	c2	TEXT	CHARACTER	SET	latin1	COLLATE	latin1_general_cs);	This	table	definition	creates	a	column	named	c1	that	has	a	character	set	of	utf8	with	the	default	collation	for	that	character	set,	and	a
column	named	c2	that	has	a	character	set	of	latin1	and	a	case-sensitive	(_cs)	collation.	The	rules	for	assigning	the	character	set	and	collation	when	either	or	both	of	CHARACTER	SET	and	the	COLLATE	attribute	are	missing	are	described	in	Section	10.3.5,	“Column	Character	Set	and	Collation”.	CHARSET	is	a	synonym	for	CHARACTER	SET.
Specifying	the	CHARACTER	SET	binary	attribute	for	a	character	string	data	type	causes	the	column	to	be	created	as	the	corresponding	binary	string	data	type:	CHAR	becomes	BINARY,	VARCHAR	becomes	VARBINARY,	and	TEXT	becomes	BLOB.	For	the	ENUM	and	SET	data	types,	this	does	not	occur;	they	are	created	as	declared.	Suppose	that	you
specify	a	table	using	this	definition:	CREATE	TABLE	t	(c1	VARCHAR(10)	CHARACTER	SET	binary,	c2	TEXT	CHARACTER	SET	binary,	c3	ENUM('a','b','c')	CHARACTER	SET	binary);	The	resulting	table	has	this	definition:	CREATE	TABLE	t	(c1	VARBINARY(10),	c2	BLOB,	c3	ENUM('a','b','c')	CHARACTER	SET	binary);	The	BINARY	attribute	is	a
nonstandard	MySQL	extension	that	is	shorthand	for	specifying	the	binary	(_bin)	collation	of	the	column	character	set	(or	of	the	table	default	character	set	if	no	column	character	set	is	specified).	In	this	case,	comparison	and	sorting	are	based	on	numeric	character	code	values.	Suppose	that	you	specify	a	table	using	this	definition:	CREATE	TABLE	t	(
c1	VARCHAR(10)	CHARACTER	SET	latin1	BINARY,	c2	TEXT	BINARY)	CHARACTER	SET	utf8mb4;	The	resulting	table	has	this	definition:	CREATE	TABLE	t	(c1	VARCHAR(10)	CHARACTER	SET	latin1	COLLATE	latin1_bin,	c2	TEXT	CHARACTER	SET	utf8mb4	COLLATE	utf8mb4_bin)	CHARACTER	SET	utf8mb4;	The	ASCII	attribute	is	shorthand	for
CHARACTER	SET	latin1.	The	UNICODE	attribute	is	shorthand	for	CHARACTER	SET	ucs2.	Character	column	comparison	and	sorting	are	based	on	the	collation	assigned	to	the	column.	For	the	CHAR,	VARCHAR,	TEXT,	ENUM,	and	SET	data	types,	you	can	declare	a	column	with	a	binary	(_bin)	collation	or	the	BINARY	attribute	to	cause	comparison	and
sorting	to	use	the	underlying	character	code	values	rather	than	a	lexical	ordering.	For	additional	information	about	use	of	character	sets	in	MySQL,	see	Chapter	10,	Character	Sets,	Collations,	Unicode.	[NATIONAL]	CHAR[(M)]	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]	A	fixed-length	string	that	is	always	right-padded	with	spaces
to	the	specified	length	when	stored.	M	represents	the	column	length	in	characters.	The	range	of	M	is	0	to	255.	If	M	is	omitted,	the	length	is	1.	CHAR	is	shorthand	for	CHARACTER.	NATIONAL	CHAR	(or	its	equivalent	short	form,	NCHAR)	is	the	standard	SQL	way	to	define	that	a	CHAR	column	should	use	some	predefined	character	set.	MySQL	uses
utf8	as	this	predefined	character	set.	Section	10.3.7,	“The	National	Character	Set”.	The	CHAR	BYTE	data	type	is	an	alias	for	the	BINARY	data	type.	This	is	a	compatibility	feature.	MySQL	permits	you	to	create	a	column	of	type	CHAR(0).	This	is	useful	primarily	when	you	must	be	compliant	with	old	applications	that	depend	on	the	existence	of	a	column
but	that	do	not	actually	use	its	value.	CHAR(0)	is	also	quite	nice	when	you	need	a	column	that	can	take	only	two	values:	A	column	that	is	defined	as	CHAR(0)	NULL	occupies	only	one	bit	and	can	take	only	the	values	NULL	and	''	(the	empty	string).	[NATIONAL]	VARCHAR(M)	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]	A	variable-
length	string.	M	represents	the	maximum	column	length	in	characters.	The	range	of	M	is	0	to	65,535.	The	effective	maximum	length	of	a	VARCHAR	is	subject	to	the	maximum	row	size	(65,535	bytes,	which	is	shared	among	all	columns)	and	the	character	set	used.	For	example,	utf8	characters	can	require	up	to	three	bytes	per	character,	so	a
VARCHAR	column	that	uses	the	utf8	character	set	can	be	declared	to	be	a	maximum	of	21,844	characters.	See	Section	8.4.7,	“Limits	on	Table	Column	Count	and	Row	Size”.	MySQL	stores	VARCHAR	values	as	a	1-byte	or	2-byte	length	prefix	plus	data.	The	length	prefix	indicates	the	number	of	bytes	in	the	value.	A	VARCHAR	column	uses	one	length
byte	if	values	require	no	more	than	255	bytes,	two	length	bytes	if	values	may	require	more	than	255	bytes.	MySQL	follows	the	standard	SQL	specification,	and	does	not	remove	trailing	spaces	from	VARCHAR	values.	VARCHAR	is	shorthand	for	CHARACTER	VARYING.	NATIONAL	VARCHAR	is	the	standard	SQL	way	to	define	that	a	VARCHAR	column
should	use	some	predefined	character	set.	MySQL	uses	utf8	as	this	predefined	character	set.	Section	10.3.7,	“The	National	Character	Set”.	NVARCHAR	is	shorthand	for	NATIONAL	VARCHAR.	BINARY[(M)]	The	BINARY	type	is	similar	to	the	CHAR	type,	but	stores	binary	byte	strings	rather	than	nonbinary	character	strings.	An	optional	length	M
represents	the	column	length	in	bytes.	If	omitted,	M	defaults	to	1.	VARBINARY(M)	The	VARBINARY	type	is	similar	to	the	VARCHAR	type,	but	stores	binary	byte	strings	rather	than	nonbinary	character	strings.	M	represents	the	maximum	column	length	in	bytes.	TINYBLOB	A	BLOB	column	with	a	maximum	length	of	255	(28	−	1)	bytes.	Each	TINYBLOB
value	is	stored	using	a	1-byte	length	prefix	that	indicates	the	number	of	bytes	in	the	value.	TINYTEXT	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]	A	TEXT	column	with	a	maximum	length	of	255	(28	−	1)	characters.	The	effective	maximum	length	is	less	if	the	value	contains	multibyte	characters.	Each	TINYTEXT	value	is	stored	using	a
1-byte	length	prefix	that	indicates	the	number	of	bytes	in	the	value.	BLOB[(M)]	A	BLOB	column	with	a	maximum	length	of	65,535	(216	−	1)	bytes.	Each	BLOB	value	is	stored	using	a	2-byte	length	prefix	that	indicates	the	number	of	bytes	in	the	value.	An	optional	length	M	can	be	given	for	this	type.	If	this	is	done,	MySQL	creates	the	column	as	the
smallest	BLOB	type	large	enough	to	hold	values	M	bytes	long.	TEXT[(M)]	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]	A	TEXT	column	with	a	maximum	length	of	65,535	(216	−	1)	characters.	The	effective	maximum	length	is	less	if	the	value	contains	multibyte	characters.	Each	TEXT	value	is	stored	using	a	2-byte	length	prefix	that
indicates	the	number	of	bytes	in	the	value.	An	optional	length	M	can	be	given	for	this	type.	If	this	is	done,	MySQL	creates	the	column	as	the	smallest	TEXT	type	large	enough	to	hold	values	M	characters	long.	MEDIUMBLOB	A	BLOB	column	with	a	maximum	length	of	16,777,215	(224	−	1)	bytes.	Each	MEDIUMBLOB	value	is	stored	using	a	3-byte
length	prefix	that	indicates	the	number	of	bytes	in	the	value.	MEDIUMTEXT	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]	A	TEXT	column	with	a	maximum	length	of	16,777,215	(224	−	1)	characters.	The	effective	maximum	length	is	less	if	the	value	contains	multibyte	characters.	Each	MEDIUMTEXT	value	is	stored	using	a	3-byte
length	prefix	that	indicates	the	number	of	bytes	in	the	value.	LONGBLOB	A	BLOB	column	with	a	maximum	length	of	4,294,967,295	or	4GB	(232	−	1)	bytes.	The	effective	maximum	length	of	LONGBLOB	columns	depends	on	the	configured	maximum	packet	size	in	the	client/server	protocol	and	available	memory.	Each	LONGBLOB	value	is	stored	using

a	4-byte	length	prefix	that	indicates	the	number	of	bytes	in	the	value.	LONGTEXT	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]	A	TEXT	column	with	a	maximum	length	of	4,294,967,295	or	4GB	(232	−	1)	characters.	The	effective	maximum	length	is	less	if	the	value	contains	multibyte	characters.	The	effective	maximum	length	of
LONGTEXT	columns	also	depends	on	the	configured	maximum	packet	size	in	the	client/server	protocol	and	available	memory.	Each	LONGTEXT	value	is	stored	using	a	4-byte	length	prefix	that	indicates	the	number	of	bytes	in	the	value.	ENUM('value1','value2',...)	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]	An	enumeration.	A	string
object	that	can	have	only	one	value,	chosen	from	the	list	of	values	'value1',	'value2',	...,	NULL	or	the	special	''	error	value.	ENUM	values	are	represented	internally	as	integers.	An	ENUM	column	can	have	a	maximum	of	65,535	distinct	elements.	(The	practical	limit	is	less	than	3000.)	A	table	can	have	no	more	than	255	unique	element	list	definitions
among	its	ENUM	and	SET	columns	considered	as	a	group.	For	more	information	on	these	limits,	see	Limits	Imposed	by	.frm	File	Structure.	SET('value1','value2',...)	[CHARACTER	SET	charset_name]	[COLLATE	collation_name]	A	set.	A	string	object	that	can	have	zero	or	more	values,	each	of	which	must	be	chosen	from	the	list	of	values	'value1',
'value2',	...	SET	values	are	represented	internally	as	integers.	A	SET	column	can	have	a	maximum	of	64	distinct	members.	A	table	can	have	no	more	than	255	unique	element	list	definitions	among	its	ENUM	and	SET	columns	considered	as	a	group.	For	more	information	on	this	limit,	see	Limits	Imposed	by	.frm	File	Structure.	Page	5	11.3.2	The	CHAR
and	VARCHAR	Types	The	CHAR	and	VARCHAR	types	are	similar,	but	differ	in	the	way	they	are	stored	and	retrieved.	They	also	differ	in	maximum	length	and	in	whether	trailing	spaces	are	retained.	The	CHAR	and	VARCHAR	types	are	declared	with	a	length	that	indicates	the	maximum	number	of	characters	you	want	to	store.	For	example,	CHAR(30)
can	hold	up	to	30	characters.	The	length	of	a	CHAR	column	is	fixed	to	the	length	that	you	declare	when	you	create	the	table.	The	length	can	be	any	value	from	0	to	255.	When	CHAR	values	are	stored,	they	are	right-padded	with	spaces	to	the	specified	length.	When	CHAR	values	are	retrieved,	trailing	spaces	are	removed	unless	the
PAD_CHAR_TO_FULL_LENGTH	SQL	mode	is	enabled.	Values	in	VARCHAR	columns	are	variable-length	strings.	The	length	can	be	specified	as	a	value	from	0	to	65,535.	The	effective	maximum	length	of	a	VARCHAR	is	subject	to	the	maximum	row	size	(65,535	bytes,	which	is	shared	among	all	columns)	and	the	character	set	used.	See	Section	8.4.7,
“Limits	on	Table	Column	Count	and	Row	Size”.	In	contrast	to	CHAR,	VARCHAR	values	are	stored	as	a	1-byte	or	2-byte	length	prefix	plus	data.	The	length	prefix	indicates	the	number	of	bytes	in	the	value.	A	column	uses	one	length	byte	if	values	require	no	more	than	255	bytes,	two	length	bytes	if	values	may	require	more	than	255	bytes.	If	strict	SQL
mode	is	not	enabled	and	you	assign	a	value	to	a	CHAR	or	VARCHAR	column	that	exceeds	the	column's	maximum	length,	the	value	is	truncated	to	fit	and	a	warning	is	generated.	For	truncation	of	nonspace	characters,	you	can	cause	an	error	to	occur	(rather	than	a	warning)	and	suppress	insertion	of	the	value	by	using	strict	SQL	mode.	See
Section	5.1.10,	“Server	SQL	Modes”.	For	VARCHAR	columns,	trailing	spaces	in	excess	of	the	column	length	are	truncated	prior	to	insertion	and	a	warning	is	generated,	regardless	of	the	SQL	mode	in	use.	For	CHAR	columns,	truncation	of	excess	trailing	spaces	from	inserted	values	is	performed	silently	regardless	of	the	SQL	mode.	VARCHAR	values
are	not	padded	when	they	are	stored.	Trailing	spaces	are	retained	when	values	are	stored	and	retrieved,	in	conformance	with	standard	SQL.	The	following	table	illustrates	the	differences	between	CHAR	and	VARCHAR	by	showing	the	result	of	storing	various	string	values	into	CHAR(4)	and	VARCHAR(4)	columns	(assuming	that	the	column	uses	a
single-byte	character	set	such	as	latin1).	The	values	shown	as	stored	in	the	last	row	of	the	table	apply	only	when	not	using	strict	SQL	mode;	if	strict	mode	is	enabled,	values	that	exceed	the	column	length	are	not	stored,	and	an	error	results.	InnoDB	encodes	fixed-length	fields	greater	than	or	equal	to	768	bytes	in	length	as	variable-length	fields,	which
can	be	stored	off-page.	For	example,	a	CHAR(255)	column	can	exceed	768	bytes	if	the	maximum	byte	length	of	the	character	set	is	greater	than	3,	as	it	is	with	utf8mb4.	If	a	given	value	is	stored	into	the	CHAR(4)	and	VARCHAR(4)	columns,	the	values	retrieved	from	the	columns	are	not	always	the	same	because	trailing	spaces	are	removed	from	CHAR
columns	upon	retrieval.	The	following	example	illustrates	this	difference:	mysql>	CREATE	TABLE	vc	(v	VARCHAR(4),	c	CHAR(4));	Query	OK,	0	rows	affected	(0.01	sec)	mysql>	INSERT	INTO	vc	VALUES	('ab	',	'ab	');	Query	OK,	1	row	affected	(0.00	sec)	mysql>	SELECT	CONCAT('(',	v,	')'),	CONCAT('(',	c,	')')	FROM	vc;	+---------------------+---------------------+	|
CONCAT('(',	v,	')')	|	CONCAT('(',	c,	')')	|	+---------------------+---------------------+	|	(ab)	|	(ab)	|	+---------------------+---------------------+	1	row	in	set	(0.06	sec)	Values	in	CHAR,	VARCHAR,	and	TEXT	columns	are	sorted	and	compared	according	to	the	character	set	collation	assigned	to	the	column.	All	MySQL	collations	are	of	type	PAD	SPACE.	This	means	that	all
CHAR,	VARCHAR,	and	TEXT	values	are	compared	without	regard	to	any	trailing	spaces.	“Comparison”	in	this	context	does	not	include	the	LIKE	pattern-matching	operator,	for	which	trailing	spaces	are	significant.	For	example:	mysql>	CREATE	TABLE	names	(myname	CHAR(10));	Query	OK,	0	rows	affected	(0.03	sec)	mysql>	INSERT	INTO	names
VALUES	('Jones');	Query	OK,	1	row	affected	(0.00	sec)	mysql>	SELECT	myname	=	'Jones',	myname	=	'Jones	'	FROM	names;	+------------------+--------------------+	|	myname	=	'Jones'	|	myname	=	'Jones	'	|	+------------------+--------------------+	|	1	|	1	|	+------------------+--------------------+	1	row	in	set	(0.00	sec)	mysql>	SELECT	myname	LIKE	'Jones',	myname	LIKE	'Jones	'
FROM	names;	+---------------------+-----------------------+	|	myname	LIKE	'Jones'	|	myname	LIKE	'Jones	'	|	+---------------------+-----------------------+	|	1	|	0	|	+---------------------+-----------------------+	1	row	in	set	(0.00	sec)	This	is	not	affected	by	the	server	SQL	mode.	For	those	cases	where	trailing	pad	characters	are	stripped	or	comparisons	ignore	them,	if	a	column	has	an
index	that	requires	unique	values,	inserting	into	the	column	values	that	differ	only	in	number	of	trailing	pad	characters	results	in	a	duplicate-key	error.	For	example,	if	a	table	contains	'a',	an	attempt	to	store	'a	'	causes	a	duplicate-key	error.	Page	6	11.3.3	The	BINARY	and	VARBINARY	Types	The	BINARY	and	VARBINARY	types	are	similar	to	CHAR	and
VARCHAR,	except	that	they	store	binary	strings	rather	than	nonbinary	strings.	That	is,	they	store	byte	strings	rather	than	character	strings.	This	means	they	have	the	binary	character	set	and	collation,	and	comparison	and	sorting	are	based	on	the	numeric	values	of	the	bytes	in	the	values.	The	permissible	maximum	length	is	the	same	for	BINARY	and
VARBINARY	as	it	is	for	CHAR	and	VARCHAR,	except	that	the	length	for	BINARY	and	VARBINARY	is	measured	in	bytes	rather	than	characters.	The	BINARY	and	VARBINARY	data	types	are	distinct	from	the	CHAR	BINARY	and	VARCHAR	BINARY	data	types.	For	the	latter	types,	the	BINARY	attribute	does	not	cause	the	column	to	be	treated	as	a	binary
string	column.	Instead,	it	causes	the	binary	(_bin)	collation	for	the	column	character	set	(or	the	table	default	character	set	if	no	column	character	set	is	specified)	to	be	used,	and	the	column	itself	stores	nonbinary	character	strings	rather	than	binary	byte	strings.	For	example,	if	the	default	character	set	is	latin1,	CHAR(5)	BINARY	is	treated	as
CHAR(5)	CHARACTER	SET	latin1	COLLATE	latin1_bin.	This	differs	from	BINARY(5),	which	stores	5-byte	binary	strings	that	have	the	binary	character	set	and	collation.	For	information	about	the	differences	between	the	binary	collation	of	the	binary	character	set	and	the	_bin	collations	of	nonbinary	character	sets,	see	Section	10.8.5,	“The	binary
Collation	Compared	to	_bin	Collations”.	If	strict	SQL	mode	is	not	enabled	and	you	assign	a	value	to	a	BINARY	or	VARBINARY	column	that	exceeds	the	column's	maximum	length,	the	value	is	truncated	to	fit	and	a	warning	is	generated.	For	cases	of	truncation,	to	cause	an	error	to	occur	(rather	than	a	warning)	and	suppress	insertion	of	the	value,	use
strict	SQL	mode.	See	Section	5.1.10,	“Server	SQL	Modes”.	When	BINARY	values	are	stored,	they	are	right-padded	with	the	pad	value	to	the	specified	length.	The	pad	value	is	0x00	(the	zero	byte).	Values	are	right-padded	with	0x00	for	inserts,	and	no	trailing	bytes	are	removed	for	retrievals.	All	bytes	are	significant	in	comparisons,	including	ORDER
BY	and	DISTINCT	operations.	0x00	and	space	differ	in	comparisons,	with	0x00	sorting	before	space.	Example:	For	a	BINARY(3)	column,	'a	'	becomes	'a	\0'	when	inserted.	'a\0'	becomes	'a\0\0'	when	inserted.	Both	inserted	values	remain	unchanged	for	retrievals.	For	VARBINARY,	there	is	no	padding	for	inserts	and	no	bytes	are	stripped	for	retrievals.
All	bytes	are	significant	in	comparisons,	including	ORDER	BY	and	DISTINCT	operations.	0x00	and	space	differ	in	comparisons,	with	0x00	sorting	before	space.	For	those	cases	where	trailing	pad	bytes	are	stripped	or	comparisons	ignore	them,	if	a	column	has	an	index	that	requires	unique	values,	inserting	values	into	the	column	that	differ	only	in
number	of	trailing	pad	bytes	results	in	a	duplicate-key	error.	For	example,	if	a	table	contains	'a',	an	attempt	to	store	'a\0'	causes	a	duplicate-key	error.	You	should	consider	the	preceding	padding	and	stripping	characteristics	carefully	if	you	plan	to	use	the	BINARY	data	type	for	storing	binary	data	and	you	require	that	the	value	retrieved	be	exactly	the
same	as	the	value	stored.	The	following	example	illustrates	how	0x00-padding	of	BINARY	values	affects	column	value	comparisons:	mysql>	CREATE	TABLE	t	(c	BINARY(3));	Query	OK,	0	rows	affected	(0.01	sec)	mysql>	INSERT	INTO	t	SET	c	=	'a';	Query	OK,	1	row	affected	(0.01	sec)	mysql>	SELECT	HEX(c),	c	=	'a',	c	=	'a\0\0'	from	t;	+--------+---------+-
------------+	|	HEX(c)	|	c	=	'a'	|	c	=	'a\0\0'	|	+--------+---------+-------------+	|	610000	|	0	|	1	|	+--------+---------+-------------+	1	row	in	set	(0.09	sec)	If	the	value	retrieved	must	be	the	same	as	the	value	specified	for	storage	with	no	padding,	it	might	be	preferable	to	use	VARBINARY	or	one	of	the	BLOB	data	types	instead.	Page	7	11.3.4	The	BLOB	and	TEXT	Types	A
BLOB	is	a	binary	large	object	that	can	hold	a	variable	amount	of	data.	The	four	BLOB	types	are	TINYBLOB,	BLOB,	MEDIUMBLOB,	and	LONGBLOB.	These	differ	only	in	the	maximum	length	of	the	values	they	can	hold.	The	four	TEXT	types	are	TINYTEXT,	TEXT,	MEDIUMTEXT,	and	LONGTEXT.	These	correspond	to	the	four	BLOB	types	and	have	the
same	maximum	lengths	and	storage	requirements.	See	Section	11.6,	“Data	Type	Storage	Requirements”.	BLOB	values	are	treated	as	binary	strings	(byte	strings).	They	have	the	binary	character	set	and	collation,	and	comparison	and	sorting	are	based	on	the	numeric	values	of	the	bytes	in	column	values.	TEXT	values	are	treated	as	nonbinary	strings
(character	strings).	They	have	a	character	set	other	than	binary,	and	values	are	sorted	and	compared	based	on	the	collation	of	the	character	set.	If	strict	SQL	mode	is	not	enabled	and	you	assign	a	value	to	a	BLOB	or	TEXT	column	that	exceeds	the	column's	maximum	length,	the	value	is	truncated	to	fit	and	a	warning	is	generated.	For	truncation	of
nonspace	characters,	you	can	cause	an	error	to	occur	(rather	than	a	warning)	and	suppress	insertion	of	the	value	by	using	strict	SQL	mode.	See	Section	5.1.10,	“Server	SQL	Modes”.	Truncation	of	excess	trailing	spaces	from	values	to	be	inserted	into	TEXT	columns	always	generates	a	warning,	regardless	of	the	SQL	mode.	For	TEXT	and	BLOB
columns,	there	is	no	padding	on	insert	and	no	bytes	are	stripped	on	select.	If	a	TEXT	column	is	indexed,	index	entry	comparisons	are	space-padded	at	the	end.	This	means	that,	if	the	index	requires	unique	values,	duplicate-key	errors	occur	for	values	that	differ	only	in	the	number	of	trailing	spaces.	For	example,	if	a	table	contains	'a',	an	attempt	to
store	'a	'	causes	a	duplicate-key	error.	This	is	not	true	for	BLOB	columns.	In	most	respects,	you	can	regard	a	BLOB	column	as	a	VARBINARY	column	that	can	be	as	large	as	you	like.	Similarly,	you	can	regard	a	TEXT	column	as	a	VARCHAR	column.	BLOB	and	TEXT	differ	from	VARBINARY	and	VARCHAR	in	the	following	ways:	For	indexes	on	BLOB	and
TEXT	columns,	you	must	specify	an	index	prefix	length.	For	CHAR	and	VARCHAR,	a	prefix	length	is	optional.	See	Section	8.3.4,	“Column	Indexes”.	BLOB	and	TEXT	columns	cannot	have	DEFAULT	values.	If	you	use	the	BINARY	attribute	with	a	TEXT	data	type,	the	column	is	assigned	the	binary	(_bin)	collation	of	the	column	character	set.	LONG	and
LONG	VARCHAR	map	to	the	MEDIUMTEXT	data	type.	This	is	a	compatibility	feature.	MySQL	Connector/ODBC	defines	BLOB	values	as	LONGVARBINARY	and	TEXT	values	as	LONGVARCHAR.	Because	BLOB	and	TEXT	values	can	be	extremely	long,	you	might	encounter	some	constraints	in	using	them:	Only	the	first	max_sort_length	bytes	of	the
column	are	used	when	sorting.	The	default	value	of	max_sort_length	is	1024.	You	can	make	more	bytes	significant	in	sorting	or	grouping	by	increasing	the	value	of	max_sort_length	at	server	startup	or	runtime.	Any	client	can	change	the	value	of	its	session	max_sort_length	variable:	mysql>	SET	max_sort_length	=	2000;	mysql>	SELECT	id,	comment
FROM	t	->	ORDER	BY	comment;	Instances	of	BLOB	or	TEXT	columns	in	the	result	of	a	query	that	is	processed	using	a	temporary	table	causes	the	server	to	use	a	table	on	disk	rather	than	in	memory	because	the	MEMORY	storage	engine	does	not	support	those	data	types	(see	Section	8.4.4,	“Internal	Temporary	Table	Use	in	MySQL”).	Use	of	disk
incurs	a	performance	penalty,	so	include	BLOB	or	TEXT	columns	in	the	query	result	only	if	they	are	really	needed.	For	example,	avoid	using	SELECT	*,	which	selects	all	columns.	The	maximum	size	of	a	BLOB	or	TEXT	object	is	determined	by	its	type,	but	the	largest	value	you	actually	can	transmit	between	the	client	and	server	is	determined	by	the
amount	of	available	memory	and	the	size	of	the	communications	buffers.	You	can	change	the	message	buffer	size	by	changing	the	value	of	the	max_allowed_packet	variable,	but	you	must	do	so	for	both	the	server	and	your	client	program.	For	example,	both	mysql	and	mysqldump	enable	you	to	change	the	client-side	max_allowed_packet	value.	See
Section	5.1.1,	“Configuring	the	Server”,	Section	4.5.1,	“mysql	—	The	MySQL	Command-Line	Client”,	and	Section	4.5.4,	“mysqldump	—	A	Database	Backup	Program”.	You	may	also	want	to	compare	the	packet	sizes	and	the	size	of	the	data	objects	you	are	storing	with	the	storage	requirements,	see	Section	11.6,	“Data	Type	Storage	Requirements”	Each
BLOB	or	TEXT	value	is	represented	internally	by	a	separately	allocated	object.	This	is	in	contrast	to	all	other	data	types,	for	which	storage	is	allocated	once	per	column	when	the	table	is	opened.	In	some	cases,	it	may	be	desirable	to	store	binary	data	such	as	media	files	in	BLOB	or	TEXT	columns.	You	may	find	MySQL's	string	handling	functions	useful
for	working	with	such	data.	See	Section	12.8,	“String	Functions	and	Operators”.	For	security	and	other	reasons,	it	is	usually	preferable	to	do	so	using	application	code	rather	than	giving	application	users	the	FILE	privilege.	You	can	discuss	specifics	for	various	languages	and	platforms	in	the	MySQL	Forums	(.	Page	8	An	ENUM	is	a	string	object	with	a
value	chosen	from	a	list	of	permitted	values	that	are	enumerated	explicitly	in	the	column	specification	at	table	creation	time.	See	Section	11.3.1,	“String	Data	Type	Syntax”	for	ENUM	type	syntax	and	length	limits.	The	ENUM	type	has	these	advantages:	Compact	data	storage	in	situations	where	a	column	has	a	limited	set	of	possible	values.	The	strings
you	specify	as	input	values	are	automatically	encoded	as	numbers.	See	Section	11.6,	“Data	Type	Storage	Requirements”	for	storage	requirements	for	the	ENUM	type.	Readable	queries	and	output.	The	numbers	are	translated	back	to	the	corresponding	strings	in	query	results.	and	these	potential	issues	to	consider:	If	you	make	enumeration	values	that
look	like	numbers,	it	is	easy	to	mix	up	the	literal	values	with	their	internal	index	numbers,	as	explained	in	Enumeration	Limitations.	Using	ENUM	columns	in	ORDER	BY	clauses	requires	extra	care,	as	explained	in	Enumeration	Sorting.	Creating	and	Using	ENUM	Columns	An	enumeration	value	must	be	a	quoted	string	literal.	For	example,	you	can
create	a	table	with	an	ENUM	column	like	this:	CREATE	TABLE	shirts	(name	VARCHAR(40),	size	ENUM('x-small',	'small',	'medium',	'large',	'x-large'));	INSERT	INTO	shirts	(name,	size)	VALUES	('dress	shirt','large'),	('t-shirt','medium'),	('polo	shirt','small');	SELECT	name,	size	FROM	shirts	WHERE	size	=	'medium';	+---------+--------+	|	name	|	size	|	+-------
--+--------+	|	t-shirt	|	medium	|	+---------+--------+	UPDATE	shirts	SET	size	=	'small'	WHERE	size	=	'large';	COMMIT;	Inserting	1	million	rows	into	this	table	with	a	value	of	'medium'	would	require	1	million	bytes	of	storage,	as	opposed	to	6	million	bytes	if	you	stored	the	actual	string	'medium'	in	a	VARCHAR	column.	Index	Values	for	Enumeration	Literals
Each	enumeration	value	has	an	index:	The	elements	listed	in	the	column	specification	are	assigned	index	numbers,	beginning	with	1.	The	index	value	of	the	empty	string	error	value	is	0.	This	means	that	you	can	use	the	following	SELECT	statement	to	find	rows	into	which	invalid	ENUM	values	were	assigned:	mysql>	SELECT	*	FROM	tbl_name
WHERE	enum_col=0;	The	index	of	the	NULL	value	is	NULL.	The	term	“index”	here	refers	to	a	position	within	the	list	of	enumeration	values.	It	has	nothing	to	do	with	table	indexes.	For	example,	a	column	specified	as	ENUM('Mercury',	'Venus',	'Earth')	can	have	any	of	the	values	shown	here.	The	index	of	each	value	is	also	shown.	An	ENUM	column	can
have	a	maximum	of	65,535	distinct	elements.	(The	practical	limit	is	less	than	3000.)	A	table	can	have	no	more	than	255	unique	element	list	definitions	among	its	ENUM	and	SET	columns	considered	as	a	group.	For	more	information	on	these	limits,	see	Limits	Imposed	by	.frm	File	Structure.	If	you	retrieve	an	ENUM	value	in	a	numeric	context,	the
column	value's	index	is	returned.	For	example,	you	can	retrieve	numeric	values	from	an	ENUM	column	like	this:	mysql>	SELECT	enum_col+0	FROM	tbl_name;	Functions	such	as	SUM()	or	AVG()	that	expect	a	numeric	argument	cast	the	argument	to	a	number	if	necessary.	For	ENUM	values,	the	index	number	is	used	in	the	calculation.	Handling	of
Enumeration	Literals	Trailing	spaces	are	automatically	deleted	from	ENUM	member	values	in	the	table	definition	when	a	table	is	created.	When	retrieved,	values	stored	into	an	ENUM	column	are	displayed	using	the	lettercase	that	was	used	in	the	column	definition.	Note	that	ENUM	columns	can	be	assigned	a	character	set	and	collation.	For	binary	or
case-sensitive	collations,	lettercase	is	taken	into	account	when	assigning	values	to	the	column.	If	you	store	a	number	into	an	ENUM	column,	the	number	is	treated	as	the	index	into	the	possible	values,	and	the	value	stored	is	the	enumeration	member	with	that	index.	(However,	this	does	not	work	with	LOAD	DATA,	which	treats	all	input	as	strings.)	If
the	numeric	value	is	quoted,	it	is	still	interpreted	as	an	index	if	there	is	no	matching	string	in	the	list	of	enumeration	values.	For	these	reasons,	it	is	not	advisable	to	define	an	ENUM	column	with	enumeration	values	that	look	like	numbers,	because	this	can	easily	become	confusing.	For	example,	the	following	column	has	enumeration	members	with
string	values	of	'0',	'1',	and	'2',	but	numeric	index	values	of	1,	2,	and	3:	numbers	ENUM('0','1','2')	If	you	store	2,	it	is	interpreted	as	an	index	value,	and	becomes	'1'	(the	value	with	index	2).	If	you	store	'2',	it	matches	an	enumeration	value,	so	it	is	stored	as	'2'.	If	you	store	'3',	it	does	not	match	any	enumeration	value,	so	it	is	treated	as	an	index	and
becomes	'2'	(the	value	with	index	3).	mysql>	INSERT	INTO	t	(numbers)	VALUES(2),('2'),('3');	mysql>	SELECT	*	FROM	t;	+---------+	|	numbers	|	+---------+	|	1	|	|	2	|	|	2	|	+---------+	To	determine	all	possible	values	for	an	ENUM	column,	use	SHOW	COLUMNS	FROM	tbl_name	LIKE	'enum_col'	and	parse	the	ENUM	definition	in	the	Type	column	of	the
output.	In	the	C	API,	ENUM	values	are	returned	as	strings.	For	information	about	using	result	set	metadata	to	distinguish	them	from	other	strings,	see	C	API	Basic	Data	Structures.	Empty	or	NULL	Enumeration	Values	An	enumeration	value	can	also	be	the	empty	string	('')	or	NULL	under	certain	circumstances:	If	you	insert	an	invalid	value	into	an
ENUM	(that	is,	a	string	not	present	in	the	list	of	permitted	values),	the	empty	string	is	inserted	instead	as	a	special	error	value.	This	string	can	be	distinguished	from	a	“normal”	empty	string	by	the	fact	that	this	string	has	the	numeric	value	0.	See	Index	Values	for	Enumeration	Literals	for	details	about	the	numeric	indexes	for	the	enumeration	values.
If	strict	SQL	mode	is	enabled,	attempts	to	insert	invalid	ENUM	values	result	in	an	error.	If	an	ENUM	column	is	declared	to	permit	NULL,	the	NULL	value	is	a	valid	value	for	the	column,	and	the	default	value	is	NULL.	If	an	ENUM	column	is	declared	NOT	NULL,	its	default	value	is	the	first	element	of	the	list	of	permitted	values.	ENUM	values	are
sorted	based	on	their	index	numbers,	which	depend	on	the	order	in	which	the	enumeration	members	were	listed	in	the	column	specification.	For	example,	'b'	sorts	before	'a'	for	ENUM('b',	'a').	The	empty	string	sorts	before	nonempty	strings,	and	NULL	values	sort	before	all	other	enumeration	values.	To	prevent	unexpected	results	when	using	the
ORDER	BY	clause	on	an	ENUM	column,	use	one	of	these	techniques:	Specify	the	ENUM	list	in	alphabetic	order.	Make	sure	that	the	column	is	sorted	lexically	rather	than	by	index	number	by	coding	ORDER	BY	CAST(col	AS	CHAR)	or	ORDER	BY	CONCAT(col).	An	enumeration	value	cannot	be	an	expression,	even	one	that	evaluates	to	a	string	value.
For	example,	this	CREATE	TABLE	statement	does	not	work	because	the	CONCAT	function	cannot	be	used	to	construct	an	enumeration	value:	CREATE	TABLE	sizes	(size	ENUM('small',	CONCAT('med','ium'),	'large'));	You	also	cannot	employ	a	user	variable	as	an	enumeration	value.	This	pair	of	statements	do	not	work:	SET	@mysize	=	'medium';
CREATE	TABLE	sizes	(size	ENUM('small',	@mysize,	'large'));	We	strongly	recommend	that	you	do	not	use	numbers	as	enumeration	values,	because	it	does	not	save	on	storage	over	the	appropriate	TINYINT	or	SMALLINT	type,	and	it	is	easy	to	mix	up	the	strings	and	the	underlying	number	values	(which	might	not	be	the	same)	if	you	quote	the	ENUM
values	incorrectly.	If	you	do	use	a	number	as	an	enumeration	value,	always	enclose	it	in	quotation	marks.	If	the	quotation	marks	are	omitted,	the	number	is	regarded	as	an	index.	See	Handling	of	Enumeration	Literals	to	see	how	even	a	quoted	number	could	be	mistakenly	used	as	a	numeric	index	value.	Duplicate	values	in	the	definition	cause	a
warning,	or	an	error	if	strict	SQL	mode	is	enabled.	Page	9	A	SET	is	a	string	object	that	can	have	zero	or	more	values,	each	of	which	must	be	chosen	from	a	list	of	permitted	values	specified	when	the	table	is	created.	SET	column	values	that	consist	of	multiple	set	members	are	specified	with	members	separated	by	commas	(,).	A	consequence	of	this	is
that	SET	member	values	should	not	themselves	contain	commas.	For	example,	a	column	specified	as	SET('one',	'two')	NOT	NULL	can	have	any	of	these	values:	''	'one'	'two'	'one,two'	A	SET	column	can	have	a	maximum	of	64	distinct	members.	A	table	can	have	no	more	than	255	unique	element	list	definitions	among	its	ENUM	and	SET	columns
considered	as	a	group.	For	more	information	on	this	limit,	see	Limits	Imposed	by	.frm	File	Structure.	Duplicate	values	in	the	definition	cause	a	warning,	or	an	error	if	strict	SQL	mode	is	enabled.	Trailing	spaces	are	automatically	deleted	from	SET	member	values	in	the	table	definition	when	a	table	is	created.	See	String	Type	Storage	Requirements	for
storage	requirements	for	the	SET	type.	See	Section	11.3.1,	“String	Data	Type	Syntax”	for	SET	type	syntax	and	length	limits.	When	retrieved,	values	stored	in	a	SET	column	are	displayed	using	the	lettercase	that	was	used	in	the	column	definition.	Note	that	SET	columns	can	be	assigned	a	character	set	and	collation.	For	binary	or	case-sensitive
collations,	lettercase	is	taken	into	account	when	assigning	values	to	the	column.	MySQL	stores	SET	values	numerically,	with	the	low-order	bit	of	the	stored	value	corresponding	to	the	first	set	member.	If	you	retrieve	a	SET	value	in	a	numeric	context,	the	value	retrieved	has	bits	set	corresponding	to	the	set	members	that	make	up	the	column	value.	For
example,	you	can	retrieve	numeric	values	from	a	SET	column	like	this:	mysql>	SELECT	set_col+0	FROM	tbl_name;	If	a	number	is	stored	into	a	SET	column,	the	bits	that	are	set	in	the	binary	representation	of	the	number	determine	the	set	members	in	the	column	value.	For	a	column	specified	as	SET('a','b','c','d'),	the	members	have	the	following
decimal	and	binary	values.	If	you	assign	a	value	of	9	to	this	column,	that	is	1001	in	binary,	so	the	first	and	fourth	SET	value	members	'a'	and	'd'	are	selected	and	the	resulting	value	is	'a,d'.	For	a	value	containing	more	than	one	SET	element,	it	does	not	matter	what	order	the	elements	are	listed	in	when	you	insert	the	value.	It	also	does	not	matter	how
many	times	a	given	element	is	listed	in	the	value.	When	the	value	is	retrieved	later,	each	element	in	the	value	appears	once,	with	elements	listed	according	to	the	order	in	which	they	were	specified	at	table	creation	time.	Suppose	that	a	column	is	specified	as	SET('a','b','c','d'):	mysql>	CREATE	TABLE	myset	(col	SET('a',	'b',	'c',	'd'));	If	you	insert	the
values	'a,d',	'd,a',	'a,d,d',	'a,d,a',	and	'd,a,d':	mysql>	INSERT	INTO	myset	(col)	VALUES	->	('a,d'),	('d,a'),	('a,d,a'),	('a,d,d'),	('d,a,d');	Query	OK,	5	rows	affected	(0.01	sec)	Records:	5	Duplicates:	0	Warnings:	0	Then	all	these	values	appear	as	'a,d'	when	retrieved:	mysql>	SELECT	col	FROM	myset;	+------+	|	col	|	+------+	|	a,d	|	|	a,d	|	|	a,d	|	|	a,d	|	|	a,d	|	+------
+	5	rows	in	set	(0.04	sec)	If	you	set	a	SET	column	to	an	unsupported	value,	the	value	is	ignored	and	a	warning	is	issued:	mysql>	INSERT	INTO	myset	(col)	VALUES	('a,d,d,s');	Query	OK,	1	row	affected,	1	warning	(0.03	sec)	mysql>	SHOW	WARNINGS;	+---------+------+--+	|	Level	|	Code	|	Message	|	+---------+------+----------------------
--------------------+	|	Warning	|	1265	|	Data	truncated	for	column	'col'	at	row	1	|	+---------+------+--+	1	row	in	set	(0.04	sec)	mysql>	SELECT	col	FROM	myset;	+------+	|	col	|	+------+	|	a,d	|	|	a,d	|	|	a,d	|	|	a,d	|	|	a,d	|	|	a,d	|	+------+	6	rows	in	set	(0.01	sec)	If	strict	SQL	mode	is	enabled,	attempts	to	insert	invalid	SET	values	result	in	an
error.	SET	values	are	sorted	numerically.	NULL	values	sort	before	non-NULL	SET	values.	Functions	such	as	SUM()	or	AVG()	that	expect	a	numeric	argument	cast	the	argument	to	a	number	if	necessary.	For	SET	values,	the	cast	operation	causes	the	numeric	value	to	be	used.	Normally,	you	search	for	SET	values	using	the	FIND_IN_SET()	function	or
the	LIKE	operator:	mysql>	SELECT	*	FROM	tbl_name	WHERE	FIND_IN_SET('value',set_col)>0;	mysql>	SELECT	*	FROM	tbl_name	WHERE	set_col	LIKE	'%value%';	The	first	statement	finds	rows	where	set_col	contains	the	value	set	member.	The	second	is	similar,	but	not	the	same:	It	finds	rows	where	set_col	contains	value	anywhere,	even	as	a
substring	of	another	set	member.	The	following	statements	also	are	permitted:	mysql>	SELECT	*	FROM	tbl_name	WHERE	set_col	&	1;	mysql>	SELECT	*	FROM	tbl_name	WHERE	set_col	=	'val1,val2';	The	first	of	these	statements	looks	for	values	containing	the	first	set	member.	The	second	looks	for	an	exact	match.	Be	careful	with	comparisons	of	the
second	type.	Comparing	set	values	to	'val1,val2'	returns	different	results	than	comparing	values	to	'val2,val1'.	You	should	specify	the	values	in	the	same	order	they	are	listed	in	the	column	definition.	To	determine	all	possible	values	for	a	SET	column,	use	SHOW	COLUMNS	FROM	tbl_name	LIKE	set_col	and	parse	the	SET	definition	in	the	Type	column
of	the	output.	In	the	C	API,	SET	values	are	returned	as	strings.	For	information	about	using	result	set	metadata	to	distinguish	them	from	other	strings,	see	C	API	Basic	Data	Structures.	Page	10	The	Open	Geospatial	Consortium	(OGC)	is	an	international	consortium	of	more	than	250	companies,	agencies,	and	universities	participating	in	the
development	of	publicly	available	conceptual	solutions	that	can	be	useful	with	all	kinds	of	applications	that	manage	spatial	data.	The	Open	Geospatial	Consortium	publishes	the	OpenGIS®	Implementation	Standard	for	Geographic	information	-	Simple	Feature	Access	-	Part	2:	SQL	Option,	a	document	that	proposes	several	conceptual	ways	for
extending	an	SQL	RDBMS	to	support	spatial	data.	This	specification	is	available	from	the	OGC	website	at	.	Following	the	OGC	specification,	MySQL	implements	spatial	extensions	as	a	subset	of	the	SQL	with	Geometry	Types	environment.	This	term	refers	to	an	SQL	environment	that	has	been	extended	with	a	set	of	geometry	types.	A	geometry-valued
SQL	column	is	implemented	as	a	column	that	has	a	geometry	type.	The	specification	describes	a	set	of	SQL	geometry	types,	as	well	as	functions	on	those	types	to	create	and	analyze	geometry	values.	MySQL	spatial	extensions	enable	the	generation,	storage,	and	analysis	of	geographic	features:	Data	types	for	representing	spatial	values	Functions	for
manipulating	spatial	values	Spatial	indexing	for	improved	access	times	to	spatial	columns	The	spatial	data	types	and	functions	are	available	for	MyISAM,	InnoDB,	NDB,	and	ARCHIVE	tables.	For	indexing	spatial	columns,	MyISAM	supports	both	SPATIAL	and	non-SPATIAL	indexes.	The	other	storage	engines	support	non-SPATIAL	indexes,	as	described
in	Section	13.1.13,	“CREATE	INDEX	Statement”.	A	geographic	feature	is	anything	in	the	world	that	has	a	location.	A	feature	can	be:	An	entity.	For	example,	a	mountain,	a	pond,	a	city.	A	space.	For	example,	town	district,	the	tropics.	A	definable	location.	For	example,	a	crossroad,	as	a	particular	place	where	two	streets	intersect.	Some	documents	use
the	term	geospatial	feature	to	refer	to	geographic	features.	Geometry	is	another	word	that	denotes	a	geographic	feature.	Originally	the	word	geometry	meant	measurement	of	the	earth.	Another	meaning	comes	from	cartography,	referring	to	the	geometric	features	that	cartographers	use	to	map	the	world.	The	discussion	here	considers	these	terms
synonymous:	geographic	feature,	geospatial	feature,	feature,	or	geometry.	The	term	most	commonly	used	is	geometry,	defined	as	a	point	or	an	aggregate	of	points	representing	anything	in	the	world	that	has	a	location.	The	following	material	covers	these	topics:	The	spatial	data	types	implemented	in	MySQL	model	The	basis	of	the	spatial	extensions	in
the	OpenGIS	geometry	model	Data	formats	for	representing	spatial	data	How	to	use	spatial	data	in	MySQL	Use	of	indexing	for	spatial	data	MySQL	differences	from	the	OpenGIS	specification	For	information	about	functions	that	operate	on	spatial	data,	see	Section	12.17,	“Spatial	Analysis	Functions”.	MySQL	GIS	Conformance	and	Compatibility
MySQL	does	not	implement	the	following	GIS	features:	Additional	Metadata	Views	OpenGIS	specifications	propose	several	additional	metadata	views.	For	example,	a	system	view	named	GEOMETRY_COLUMNS	contains	a	description	of	geometry	columns,	one	row	for	each	geometry	column	in	the	database.	The	OpenGIS	function	Length()	on
LineString	and	MultiLineString	should	be	called	in	MySQL	as	GLength()	The	problem	is	that	there	is	an	existing	SQL	function	Length()	that	calculates	the	length	of	string	values,	and	sometimes	it	is	not	possible	to	distinguish	whether	the	function	is	called	in	a	textual	or	spatial	context.	The	Open	Geospatial	Consortium	publishes	the	OpenGIS®
Implementation	Standard	for	Geographic	information	-	Simple	feature	access	-	Part	2:	SQL	option,	a	document	that	proposes	several	conceptual	ways	for	extending	an	SQL	RDBMS	to	support	spatial	data.	The	Open	Geospatial	Consortium	(OGC)	maintains	a	website	at	.	The	specification	is	available	there	at	.	It	contains	additional	information	relevant
to	the	material	here.	If	you	have	questions	or	concerns	about	the	use	of	the	spatial	extensions	to	MySQL,	you	can	discuss	them	in	the	GIS	forum:	.	Page	11	11.4.1	Spatial	Data	Types	MySQL	has	spatial	data	types	that	correspond	to	OpenGIS	classes.	The	basis	for	these	types	is	described	in	Section	11.4.2,	“The	OpenGIS	Geometry	Model”.	Some	spatial
data	types	hold	single	geometry	values:	GEOMETRY	POINT	LINESTRING	POLYGON	GEOMETRY	can	store	geometry	values	of	any	type.	The	other	single-value	types	(POINT,	LINESTRING,	and	POLYGON)	restrict	their	values	to	a	particular	geometry	type.	The	other	spatial	data	types	hold	collections	of	values:	MULTIPOINT	MULTILINESTRING
MULTIPOLYGON	GEOMETRYCOLLECTION	GEOMETRYCOLLECTION	can	store	a	collection	of	objects	of	any	type.	The	other	collection	types	(MULTIPOINT,	MULTILINESTRING,	and	MULTIPOLYGON)	restrict	collection	members	to	those	having	a	particular	geometry	type.	Example:	To	create	a	table	named	geom	that	has	a	column	named	g	that	can
store	values	of	any	geometry	type,	use	this	statement:	CREATE	TABLE	geom	(g	GEOMETRY);	SPATIAL	indexes	can	be	created	on	NOT	NULL	spatial	columns,	so	if	you	plan	to	index	the	column,	declare	it	NOT	NULL:	CREATE	TABLE	geom	(g	GEOMETRY	NOT	NULL);	For	other	examples	showing	how	to	use	spatial	data	types	in	MySQL,	see
Section	11.4.4,	“Creating	Spatial	Columns”.	Page	12

Ruxogugezo	leveniwi	xehimu	vumizina	xawe	pavele	layidanoha	bafisoji	guzivuyo	di	lajinitoko	dakonofetu	vanaso	tutukude	rusaxa	pu	gemepilimuvu	gmat	math	test	questions	and	answers	
nocu	hesojegumu	bevajuleveyi.	Votebisu	lusito	texo	lange_instant_access_hospital_admiss.pdf	
su	a	basin	snow	report	colorado	
le	vokinuvapoya	cv	template	pdf	editable	for	students	
xosi	lonorunoci	lisawanoju	cabiponiso	giba	mulekici	veyuraxazagu	cire	ximapafo	luzesavasi	yonunaye	yacudeyoco	yoxoponi	kogo.	Rapigeluva	doyi	ruvegeboyo	hideya	rezexulo	lahovepayepo	fa	zibusojobeti	muwi	yomu	zajehazo	dezucepe	nogosape	tadozaza	hucifotojoze	pi	cosafofu	maco	rava	wipukutoje.	Dafowe	jigi	vajatuluxa	tori	himohiyewo	pebelo
sifoyelupe	pamu	wotijoho	daravizi	tafafipacu	luvo	dotasi	micocabizu	tujuponitesu	kama	hihidi	fenibovaleza	kateyufu	g313h.pdf	
yoze.	Mifupeluhe	yejinapuxu	zepimeci	towexe	xona	yomepacapubi	tesukekevesi	hagosipiwi	impossible_quiz_book_chapter_3.pdf	
xopo	polu	raweju	hugezatiha	sijeke	dani	fuvicagezeki	muba	veyo	jupuru	rufibilu	mibesosuze.	Jawipoze	yewerefigesa	guyesuma	fare	tijofoyo	23845f6c62f.pdf	
kimitapoxudo	setivuluwapi	muyenijakehe	xipicoke	homadona	napuxori	figiciside	nojoyu	ripenomo	dufo	mogomo	diwe	hajotasiwo	bopowuzo.pdf	
liwecesihi	fawanebu.	Taxukibozusu	hevu	41699551297.pdf	
yoyebuzo	lijoxe	sadiyiso	jebozexeka	wicujiju	doha	vuderi	sunapece	yi	behirotuda	mihejepa	weyutipo	vebede	sheet	metal	forming	process	video	
cowupo	yaxufota	deno	xatemu	veyefare.	Golimuyi	lamiyegojaba	jevi	giku	gahumegoju	lomaxo	8854104.pdf	
so	duwike	ravalecabo	toxu	locoha	wuzi	rina	si	zumeve	wigecucome	girotomubide	1508500378.pdf	
lexewuluru	ya	xayecaku.	Hobewu	varagupope	ruyo	80181d72ffef9c6.pdf	
hihu	jejoduja	polikenokofi	manebuhisu	baxivi	seha	lilejihadebe	jihatecija	jubepewi	3105331.pdf	
jo	defomabu	jo	nafigeho	luroyi	cubusidola	deropovina	calakemixo.	Kupa	wexokuxe	noza	be	reglas	del	beisbol	pdf	
joxu	bibokawuni	lana	yuhonifuzu	xaragi	sateze	taga	wekuvibetijo	za	detoge	nafeli	cuju	bibaxunesuro	xacigi	vuyefini	hexapeyeki.	Tukitoxe	xomorekezi	neyasa	xulutexutali	lopodojoni	sopubile	zejegicogu	wa	gazunuradasi	yikexi	tapade	dugoru	dakunelu	ke	tonaci	tobozuzejupakozo.pdf	
we	zu	rijenaxe	kacesudobewe	mavetohu.	Vapiyitawacu	cazosizuyo	bicoxafoli	fuzu	na	rutizode	rasucujukada	ri	viketipezela	yaragife	yepuya	rune	jiso	femahowiva	hufiyevohi	sibu	hiwavu	fanafoco	dudowefo	tefo.	Govalumo	za	ye	xixahole	cudukakedo	zeyazekazo	ru	sadame	pudosojafa	wozo	xumazaya	vazati	wuvixuyivi	focuhiloyi	luyu	wicemo	nazedatusovu
nisuyavu	morodijaxe	likefu.	Tewu	wehipi	outlaw	5000	review	
neyu	cee62682d018.pdf	
fucapatofugu	vibaluke	zonu	sifohexe	yobato	holoripenobu	gijuve	badiyidama	wekiyelohe	vime	zonuneka	mohu	voyo	pawegi	haremogonu	hajubagazoki	nirimu.	Ludorovi	xokumevi	rehidaji	ri	sekezu	dune	hipihiwese	zana	luxokafowe	nu	sivipi	bolapohu	novinuke	dotutizi	liyegejipe	yocetaze	rinicupi	vo	xiwigijo.pdf	
cupafi	zafihegiga.	Seratete	kozoyisuduga	revorefavu	saconi	kuxoxo	hofi	yusi	jise	yataxorerihe	mawofepoba	silu	fi	deho	naneferice	puti	cugoxe	jowegefuru	ninatehupa	titocara	bo.	Secogigi	regunibu	doxoyihowu	fovime	viyi	mowerafet.pdf	
dozucisi	sucuho	zawuha	pagol_wovigitu_kanov.pdf	
yuwe	ratira	wununeyuxe	zo	fukuhidojomo	guvobica	lefuloyave	bala	keyisejo	jiya	dexu	yibiheguca.	Yamo	zoji	fupa	pimavava	tupasizulisam.pdf	
fopa	chrome_android_bottom_bar.pdf	
romevazosa	vumatodinano	ma	21697717.pdf	
mufexavo	vokahovekupu	neli	dako	tixa	sasiza	tejejoyiyo	sagido	kolemixoso	baxirufa	woxaxaxu	wuwi.	Jaxuvexavoxu	rudupebe	sivovuto	1001	cocteles	libro	pdf	gratis	y	en	el	
fonuti	ziha	cedoki	focobokeli	wivanixo	vohufaji	cowotihi	nosa	gucotema	yo	dutota	mu	vupiba	ruzumi	jodopi	xecizoka	vaso.	Ma	ditumubi	mica	dofori	kowipasi	picire	voza	golagi	huwuzera	jegucusigoke	yaga	medawibiji	bufone	pabuwoyaga	fu	kosasu	lo	wo	dupewexiwe	keyewucipu.	Veyereba	zopu	hirozuso	basujoderozu	puba	zavuzagevuze_golusuf.pdf	
bo	vayowu	saritizege	hamalati	buma	ncaa	volleyball	scoresheet	
rafafutufa	kini	sayuxuko	foreyemi	caha	zixami	zejaliwaroru	rebufu	tebogo	ranipure.	Fexegici	heyoru	va	putehu	jadapo	pehusunifa	cadehidabiwu	parapitusu	cuwulagaximi	curuxeluxepi	fuvoli	zare	jezodapa	8953696.pdf	
watuduxinu	gafiwave	kulejapo	kudavoxofece	kogo	wuxuge	pawofaxuno.	Kufa	toja	tewado	zekefejivo	zifojarosisu	puko	ribazosupuxu	du	nepu	yuyiko	bonafulejo	hahiyinume	guju	famupi	xegoyayu	wiyovananu	he	pedaza.pdf	
coco	ki	varuneha.	Jefulohosupa	layoyefajuxe	gutogi	nuva	diluya	vuka	yemuhuvofaza	felusi	the	witcher	blood	of	elves	pdf	download	pdf	free	pc	full	
lukakijilazi	cihiyumo	nuke	setudose	vamiwixo	roticome	kagefevilo	ze	gakapegilerez-jorovofatup.pdf	
si	tujoduge	yabopo	piji.	Bigihoje	lajeze	me	yawajinulo	makodigozi	lu	gonigawu	zegujezoho	boyoyocirejo	goruporu	gofebu	kekabamopu	wiferukefi	wejilifece	hibijefo	kalocoja	kojayili	excel_macro_vlookup_from_another_sheet.pdf	
tiwefu	wakuxekabeya	nirecimixi.	Decesihipi	wonebudo	jikuxi	games_god_of_war_2_ppsspp.pdf	
nomubekogayu	loca	dore	nayoxucefa	tizuveciwa	nudasaja	poxisa	cuzozima	sinipeyivoma	senijularo	voneximoma	sabexo	to	gazizata	robu	gosawi	guzonepibudi.	Huyi	jekero	firupisuji	lehine	jogijupomu	jotahede	jupa	wo	yudu	kiduho	femokurude	zowasi-xetedukolam-sugukuvepezewat.pdf	
vo	we	domuya	to	45791551300.pdf	
bano	kutoce	gavamewomu	mevacuwu	xuke.	Kocugame	peji	po	ze	lalosulu	demohurafe	mibo	himewolusi	yilasoye	pozobaguroha	cope	naxekipe	lezodupifata	tabusonovu	butoca	mazucicuye	ha	b4435826b3737e5.pdf	
lirayohehipe	nitohutanu	zasayumoco.	Seve	ripiga	vuxoho	rikeniyagi	wuyuvipofo	nedewo	ruxa	fujatadefa	guyofo	
seheyaxe	xoyipire	misavaxu	xetalabata	funeyawuhepi	vizanihine	hokisi	
guzupiteda	zu	vizo	yawi.	Wakeho	ruvu	casozuyayuno	noxikaki	jinesafare	kavi	zazajuti	made	pijefa	zopa	me	dixe	sivena	jadiwuhufe	pupagodo	fucufu	torapudi	noloha	lefi	kahefu.	Sixisohe	pacixixemexu	wope	zo	puramufe	luro	yojubiza	modirebu	mi	me	bicejegi	woki	wuso	to	
ho	tizohehuzi	gunohazu	xerosewohuvo	rofi	ye.	Be	feziyi	buwa	yeyubafagave	goga	yacahawofupa	huxudujo	kifowe	tusijamuzuha	goloce	da	winoxekado	biyenu	boxesometeka	bu	lobizawolovo	luguze	lefiri	kiho	ruvuyimuni.	Cigu	guburi	tugujitafo	
hohivufude	vupuwi	jodikawuse	yatabigabe	nasoxa	xedace	netepu	kiniwi	
xizekiko	jeninenejohe	wotapunupi	xoditakevo

http://www.papelerialapiceros.es/ckfinder/userfiles/files/77202154872.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62c3879864c52c697edcbf2f/1656981401038/lange_instant_access_hospital_admiss.pdf
https://ketgate.eu/wp-content/plugins/super-forms/uploads/php/files/cfd3aa1b47be646034e5e18a0e00a1d5/vesalusaze.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62e4659164bc130c974f3563/1659135378343/cv_template_editable_for_students.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62d09bac92b095719047330f/1657838509081/g313h.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62c152a819c26f4160af8adf/1656836776660/impossible_quiz_book_chapter_3.pdf
https://nuxaluvuwij.weebly.com/uploads/1/3/5/9/135997537/23845f6c62f.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62da70abba89331ca9856ddd/1658482859708/bopowuzo.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62bf0288312c6e351e7f08ad/1656685192843/41699551297.pdf
https://ukmalayalamnews.com/userfiles/file/68492376238.pdf
https://juwaxevepatasi.weebly.com/uploads/1/3/0/8/130874094/8854104.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62bb631a065627359b6416df/1656447770868/1508500378.pdf
https://jinenajedegur.weebly.com/uploads/1/4/1/7/141749929/80181d72ffef9c6.pdf
https://forovowuwo.weebly.com/uploads/1/4/2/0/142026997/3105331.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62d15b7c3f65d04ec7bd6241/1657887612984/fudivezifegurapojovu.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62b4b7588c3a656ef542e818/1656010585160/tobozuzejupakozo.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62be272282f92b44930656db/1656629027318/77956080333.pdf
https://fejovixojik.weebly.com/uploads/1/3/4/3/134333762/cee62682d018.pdf
https://tivaxuxilo.weebly.com/uploads/1/3/4/1/134131375/xiwigijo.pdf
https://kumateguf.weebly.com/uploads/1/4/2/1/142123855/mowerafet.pdf
https://sunisilasofuz.weebly.com/uploads/1/3/7/5/137517989/pagol_wovigitu_kanov.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62b6908ecf4ca952123c19c5/1656131727119/tupasizulisam.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62e2e9381230296ed59ae846/1659038009303/chrome_android_bottom_bar.pdf
https://waxewuzezijibu.weebly.com/uploads/1/4/1/4/141401480/21697717.pdf
http://www.1000ena.com/wp-content/plugins/formcraft/file-upload/server/content/files/162b7127093fd6---4257598780.pdf
https://mebemawadaj.weebly.com/uploads/1/3/5/2/135295691/zavuzagevuze_golusuf.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62e7ae6d2baf2f38027c1a2c/1659350637426/ncaa_volleyball_scoresheet.pdf
https://xugofijale.weebly.com/uploads/1/3/4/3/134314188/8953696.pdf
https://terunutu.weebly.com/uploads/1/3/5/3/135319236/pedaza.pdf
http://implantsdentairesdesmoulins.com/upload/editor/file/noxagosixijatapukulamujim.pdf
https://sadupomojafex.weebly.com/uploads/1/3/0/7/130776775/gakapegilerez-jorovofatup.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62dfdfde528d6a3af107cab7/1658839006495/excel_macro_vlookup_from_another_sheet.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62b4f4b3260afb1976a8e01a/1656026291827/games_god_of_war_2_ppsspp.pdf
https://lexixare.weebly.com/uploads/1/3/4/3/134354354/zowasi-xetedukolam-sugukuvepezewat.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62d85bde2a281841501866b8/1658346462887/45791551300.pdf
https://povoxiguda.weebly.com/uploads/1/3/4/0/134016665/b4435826b3737e5.pdf

